No. 14 - The Proscalopimace " Hew subfamily of Talpid Insectirores

By Katherine M. Reed

INTRODUC'TION

In the eomse of work on the insectivores of the Split Rock local famma of Wroming (Reed, 1960), I had an opportunity to examine the known material of Proscalops and its relatives. Mathew (1928, pp. 70-71) sugrested in passing that the forms known to him might constitute a new family, although he considered this conjectural. With the diseovery of at least three more of these highly distinctive forms since Matthew's time, the evidence now available indicates that at least a new subfamily of the Talpidae must be crected for the group.

I am indebted to the authorities of the Ameriean Museum of Natural History, the Chicago Natural Ilistory Musemm, the Kansas Thiversity Musem of Palcontolow, and Amherst Collecre for the loan of specimens. Dr. Charles A. Reed, Dr. William Turnbull, Dr. Reid Macdonald, Dr. Panl O. MeGrew and Dr. Raymond Alf all kindly assisted me with information about material in their collections. I also wish to thank Prof. Bryan Patterson and Mr. (raig C. Black for their help in this sturly, and the Mammal Department of the Musemm of Comparative Zoologe for access to Recent talpid and chrysochlorid material. I am also grateful to Prof. Harry B. Whittington for his assistance with the photograply.

The following abbreviations are used:
A.C.M., Amherst College Musemm ; A.M.N.H., American Mnseum of Natural History : C.N.H.M., Chicago Natural History Museum; K.C.M.V.P., Kansas Cniversity Museum of Vertebrate Paleontology ; M.C.Z., Museum of Comparative Zoology; 1., length, antero-posterior: w., width, transverse; trig., trigonid; tal., talonid.

TANONOMY

Family TALPIDAE

PROSCALOIPINAE, subfam. nov.
Type gemus. Proscalops Matthew, 1901.
Diagmosis. Skull chrysorhlorid-like; dentition of talpid type.

Skull wide and deep in posterior part; flexure in maxillary, between P^{3} and P^{4}, stronger than in Nourotrichus: lateral projections on premaxillaries; slight sagittal and oecipital erests: palate long relative to skull length; antorbital rim confined to maxillary, not joining main body of zygoma. Wide lingual shelf on upper molars with hepocone varyingly developed; dental formula ${ }_{3}^{3} \mathrm{C}$: $\mathrm{P}_{3}^{3} \mathrm{M}$:

Included !fcucre. Iroscalops: Matthew, 1901: Mesoscalops Reed, 1960; Oligoscalops gen. nov.

Range. Mid-Oligocene to mid-Niocene, North America.
Only I'rosealops miocaenus and Mesoscalops scopelotemos have hitherto been clearly diagnosed. Diagnoses of all species, in order of their chronologic appearance follow.

Oligoschlops gen. nov.

Type specics. Oligoscalops whitmanfusis sp. nor.
Range. Mit-Oligocene, Wroming and Colorado.
Diagnosis. Roots of P:: partially divided, tooth laterally compressed, abutting against P^{1} : P^{+}with large parastylar area and lingual cusp situated at mid-line ; protocones of molars directed antero-internally; M" wider than long; metastyle of M" subparallel to line joining protocone and metacone; hyporone rudimentary.

Oligoscalobs whitmanensis sp. hov.

Type. ('.N.H.M. no. 1' 25800 , partial skul and jaws.
Iypodigm. Type and K.I.M.V.P. no. 8143, left ramus with $\mathrm{I}_{2}-\mathrm{M}_{3}$.

Horizon and locality. Mid-Oligocene, type from Brule fim., Whitman, Niobrara Connty, Wyoming, collected by Dr. Paul O. McGrew. K.U.M.V.P. no. 8143 from middle Cedar Creek member of White River fm., W $1 / 2$ sec. 7, T 11 N , R 53 W , Logan County, Colorado, collected by Dr. Edwin C. Galbreath.

Diagnosis. As for the genus; the smallest known member of the Proscalopinae.

Measurements (in millimeters).
('..N.II.MI. no. P 25800

M ${ }^{1}$ left 1.2 .2	M" left l. 1.4
w. 1.7	w. 1.4
right $1.2 .1-$	right 1.1 .4
w. 1.65	w. -
M ${ }^{2}$ left 1.1 .7	M $_{2}$ right l. 1.95
w. 2.0	w. trig. 1.35
right 1.1 .8	w. tal. 1.35
w. 2.1	

Skull width at M ${ }^{2}$: 9.0
K.U.M.V.P. no. 8143

MI left 1.-	M_{3} left l. 1.5
w. tal. 1.0	w. trig. 1.3
I. left l. 2.1	w. tal. 0.9
w. trig. 1.7	
w. tal. 2.1	

Proscalops Matthew
Type species. Proscalops miocuenus Matthew.
Range. Late Mid-Oligocene to early Miocene.
Emended diagnosis. Lateral premaxillary projections dorsoventrally compressed; diastema between P^{3} and $\mathrm{P}^{4} ; \mathrm{P}^{3}$ small, oval, single rooted; P^{4} lacking parastylar area with lingual eusp anterior to mid-line; upper molars with or withont well developed hypocones; parastyles incipient on M^{1}, definite on M^{2}.

Proscalops mocaenus Matthew

Mathew, 1901, pp. 375-376, figs. 1-2; 1909, pl. 49, fig. 5; Galbreath, 1953, p. 49.
2 MCZ (Reed 6007 Mre7 Ang7
Type. A.M.N.II. no. 8949a, broken skull and jaw.
Hypodigm. Type only.
Horizon and locality. Mid-Oligocene, Vista beds. Cedar (reek, Logan County, Colorado, collected by Dr. W. D. Matthew.

Emended diaynosis. Smallest known species of the gemms. P4 relatively narrower than in Proscalops tertius, lingual cusp directed posteriorly ; lingual portions of upper molars narrower than in other species of the genus, with hypocones and protostyles less developed. I^{3} compressed antero-posteriorly, lingual portion narrow, hypocone rudimentary.

Measurements (in millimeters).
A.ML.N.II. no. 8949a

P+ left 1.9 .0	M"right 1.9 .2
w. 1.7	w. 9.7
right 1.9 .0	II: right 1.1 .5
w. 1.8	w. 1.8

M ${ }^{1}$ right l. 2.8

$$
\text { w. } 2 . \bar{J}
$$

Palatal width at M: 9.4 (from Matthew, 1901, p. 376).
Proscalops terties sp. hov.
Trype. A.M.N.I. no. 19400, partial sknll and left ramus with MI_{1-3}.

Hypodigm. Type only.
Morizon and locality. Oligocene. "White River fm.,'" possibly Brule, "Badlands, South Dakota,'" collected bỵ Dr. (i. L. . Jei)sen. No more precise information is araibable.

Diagnosis. 'Teeth very shightly larger and hypocones letter developed than in Proscalops secumdus: lingual eusp of P^{+}essentially conical, larger than in I^{\prime}. mincacoms, no part extending. anterior to labial cusp; metaconid of Me, with minute metastslid, wide opening of talonid valley to interior as in Mogera worfura.

Measurements (in millimeters).
A.M.N.J. no. 19420
P^{+}left I. -1
w. 2.1
right 1.2 .1
w. 9.2

M ${ }^{1}$ left l. 3.』
W. -2.7
right l. :3.:
W. 2.8
\² left l. 2.8
W. 9.6 .5
right l. 2.9
い. 2.75

M" lelt l. ... 4
W. -
right l. 2.1
W. 2.1

M left l. 2.85
W. trig. 1.6
W. tal. 2.0 .5

112 left 1. 2.7
W. trig. 1.8
W. tal. e. 1

M: left l. $\because . .2$
w. 1rig. 1.6
w. tal. 1.3

Skull width at $M \stackrel{\because}{2}: 12.0$

Proscalops secundus Mathew
Matthew, 1909, p. 559, pl. 51, figs. 3, 4; Calbreath 1953, p. 49.
This speeies has never been formally deseribed or diagnosed. As Galbreath points out ($19533, \mathrm{p} .49$, footnote) "the type designation and speeifie name must be cited as figures 3 and 4 of plate 51 , and the aceompanying legends on page 559 of "The Carnivor'a and Insectivora of the Bridger Basin Middle Eocene' (Matthew, W. D., 1909, Am. Mus. Nat. Hist. Mem., vol. 9, pt. 6)."

Type. A.M.N.H. no. 13798.
Hypodigm. Type only.
Horizon and locality. Early Miocene, "lower Rosebud" of Matthew, Bear-in-the-lodge Creek, Sonth Dakota, colleeted by Dr. W. D. Matthew. ${ }^{1}$

Emended diagnosis. Larger than P. miocaenus; lingual cusp of P^{4} broader and extending farther anteriorly than in P. miocaemus, about as in Mesoscalops scopelotemos; lingual portion of M^{1-3} broader, and hypocones better developed on M^{1-2} than in 1 '. miocaemus; posterior root of zygomatie arch joining flange extending up side of cranium.

Measurements (in millimeters).
A.M.N.H. no. 13798

P^{4} left l. 1.85	M ${ }^{1}$ left 1.3 .1
w. 1.1 .6	w. 2.6
right 1.1 .9	right 1.2 .7
w. 1.6	w. 2.5
M^{2} left 1.2 .55	M 3 left 1.2 .3
w. 2.8	w. 1.9
right 1.2 .4	right 1.2 .2
w. 2.8	w. 1.8

Skull width at M^{2} : 10.7; skull is slightly ernshed transversely.

Mesoscalops Reed
Type species. Mesosealops scopelotemos Reed 1960.
Range. Mid-Miocene, Wyoming.
Diagnosis. In general similar to Proscalops, but differing as follows: protocone of upper molars more rounded and somewhat larger than hypocone, situated more nearly directly internal to

[^0]paracone, imparting a square appearance to the outline of teeth; $P^{\prime+}$ with lingual face faintly grooved and with wide lingual shelf: lower molars with small median cingulum just above gum line between hypo- and protoconids, talonid of M_{1} wider than trigonid.

Mescoscalons scopelotemos Reed
Reed, 1960. pp. 2-4, $7-8$, pl. 1, pl. 2, figs. 1, 2.
Type. A.C'.M. no. 10461, isolated left M ${ }^{1}$.
Mypodigm. 'Type and mmmerous isolated teeth including $\mathrm{P}^{4}-\mathrm{MI}^{3}, \mathrm{M}_{1-3}$. (See Reed 1960 , p. 2).

Horizon aud locality. Wid-Miocene; NW $1 / 4$ sec. 36, T 29 N , R 90 W , Fremont Countr, Wyoming, from the vicinity of the Brachycrus quarry seven miles west of Muddy Gap filling station, in a draw about $1 / 4$ mile south of I'S. highway 287.

Diagnosis. As for the genus.
Measurcments. See Reed 1960, pp. 7-8.

MORPHOLOGY

The subfamily lroscalopinae is at present represented only by skulls and partial rami or by isolated teeth. Leaving aside for the moment the possible but questionable association of Arctory-ctes-Cryptoryctes with these forms, there are no posteranial elements known to me that can definitely be assigned to the species.

The skull

No sutures can be detected in any of the specimens, a situation not uncommon among small fossorial forms. The anterior portion of the skull is preserved only in Proscalops secundus and Oligoscalops whitmancusis. The two are similar in having lateral projections on the premaxillaries. In Oligoscalops these projections are abraded and now extend to a point above the roots of I^{1}; it is mblikely that they extended farther forward. The lateral projections are only faintly demareated from the dorsal surface of the smont; a slight groove partially separates the nasals and the projections posteriorly. The lateral projections in P^{\prime}. secumdus are more distinct than in the earlier form. As preserved, they extend slightly beyond ${ }^{1}$. The processes form conspicuons projecting shelves, flat dorsally, situated well below the level of the nasals. The edges of the projections tip
npward very slighty. These projections are distinctly different from any strmetures in the same area in other tappids. There are slight dorsal swellings in the premaxillaries of the various talpids examined - s'apmus. I'arascalops. Talpu, Semootrichus. Comdylura, Ścalopus, Mo!fera. V'ropsilus. Drsmana, (íalomys. Rhymennar - but in no ease would these swellings signifirantly change the round or squarish ontline of a transverse section through the anterior part of the skill. A similar seetion through either of the fossil skulls would give an elliptical section with the major axis horizontal. The projections are more nearly comparable to the premaxillary projections of the chrysochlorids, but here too there are distinct differences. The narial opening of the Prosealopinae is sitmated immediately above the incisors with no anterodorsally inclined bony shelf above I^{1}, such as ocemos in the Afriean chrysorhlorids, espereially in ('hlorotalpa. In Amblysomus and Eremitalpa the lateral projeetions are on the same level as the nasals and tend to converge ventro-medially, rather than more medially as in the Prosealopinac. In all chrysochlorids the projections extend berond the footh-bearing portion of the premaxillary, and in none are the projections as distinctly differentiated from the gemeral outline of the skull as they are in I^{\prime}. secumdus. Oligoscalops more nearly resembles the ehryso chlorids in this latter respect. In a specimen of Ercmitalpo (M. (. Z. no. 39614), the eartilage of the rhinarimm remains. The cartilage is attached to the premaxillaries rentrally and the masals dorsally ; it is supported ventro-laterally by the lateral projections. It is likely that the projections in the Proscatopinae served a similar purpose. The similarity in structure to the dhryochlorids thus suggests a nasal region more chrersochloridlike than mole-like.

On the skull of Oligosealops there are two slight depressions above I:3, one on either side. These are on the dorsal side of the premaxillary and are slightly deeper anteromedially than posteriorly: Analogons depressions are not immediately evident on P. secuudus, but may be represented by the dorsal surface of the lateral projections and possibly the rertical portions of the premaxillary medial to the projections. Nothing similar oceurs either in talpids or in ehresochlorids.

When the skulls of Proscolops secmurdus. Oligoscalops whitmamensis, and Proscalops tertims are viewed in profile, a feature common to all can be seen, namely. a notable difference in the
depth anteriorly and posteriorly. This difference can be measured only in I^{\prime}. secundus and tertins, where the eranial region is reasonably complete, but a similar difference is elearly suggested in Oligoscalops. The difference between the two dimensions is abore or at the upper limit of similar measmrements in both talpids and chrysochlorids.

The tooth row in the Proscalopinae shows a flexure or arehing between P^{3} and P^{4}, even more pronounced than in Nemrotichus. Anterior to l^{p+}, the tooth row tends to parallel the dorsal profile of the antorbital portion of the skull. Posterior to P^{4} the tooth row and the skull profile diverge, the tooth row descending. This characteristic can be seen in all the skulls, even in that of the poorly preserved P. miocacmus; it is best shown by P. secumdus. This flexure occurs at the shallowest part of the skull. A similar flexure cannot be found in other talpids except Newrotrichus, or in the chrysochlorids.

The structure of the zygomatic arch distinguishes the Prosealopinae both from other talpids and from the chrysochlorids. The anterior part of the zygoma is preserved in all the available skulls. The anterior part of the arch in all is slender and rounded, stonter than in Recent talpids, but not as deep as in the chrysochlorits. The entire arch is preserved on the left side of P. miocarmus; it maintains its diameter thronghont as in modern talpids, the cross-section of the posterior root being essentially the same as that of the anterior. In I. tcrtius, the left side of the skull preserves a small romided posterior root; the right side corresponds, although badly worn. P. sccuudus likewise preserves a small rounded posterior root. This is a notable difference from chrysochlorids in which the arch increases greatly in depth posteriorly. The arch in the fossil forms shows no upward bending' as in Lropsilus or Rhymcomax. The facial regions of P. secmudus, P. tertins and Oligoscalops are widest at the level of I^{2}. The zygomatic arch leaves the side of the facial region above the posterior margin of M^{2}, as in Scapamus califormicus and Uropsilus. In all other talpids, the areh leaves opposite M^{3} or the posterior margin of the tooth row. In chrysochlorids the arch begins above M², exeept in Eremitalpa. The antorbital border, which, due to the size of the infra-orbital foramen, forms a bar as in other insectivores, does not reach to the zygoma but joins the main body of the maxillary medial to the zyoma. The har has a very slight posterior slant to it. This feature of the skull is in decided contrast to the Talpinae, Condybminae and Scalopinae and to the chrysochlorids in which not only does the bar join the zygoma,
but it also has a distinct posterior slant, miting with the arch posterior to the tooth row. In Moyora, the bar appears to be attached to the side of the facial region, but here the posterior slant is greater than in the Prosealopinae. In Iropsilus, however, the bar is stont, posterior to the infraorbital and the large lace rymal foramina and joins the maxillary. It does not make up any part of the zyeroma. The bar in Desmom, joins medial to the rim of the zyema, but is not attached to the maxillary.

In I. secumbus, there is evidence of a squamosal flange extending up the side of the skull, suggestive of the chrysochlorid condition. However, the zyoma plays no part in the formation of the flange in P. secumdus as it does in the chrysochlorids. It is impossible to determine the original width due to breakage. Matthew's figure (1909) shows that some of this flange has been lost since the photograph was made. The dorsal part of the flange is lacking, but it is probable that it extended to the slight sagittal crest present in this form. At a point approximately one-third of the distance between the glenoid fossa and the sagittal crest there is a buttress that divides the depression made by the flange into two portions, the rentral evidently deeper than the dorsal. A somewhat similar buttress is found in Amblysomus and Eremitalpa at the point where the flange joins the side wall of the cranium. However, the flange in I. secundus undoubtedly diel not end at the buttress but continued toward the sagittal crest becoming progressively shallower dorsally. It is probable that the sofumosal in this form resembled that of the large ehrysochlorid. Chrysospalar, rather than the smaller forms, in the degree of projection from the skull, as shown in Matthew's figure. Desmanc, which has both a sagittal crest and lateral, nearly horizontal flanges at the extremities of the occipital erest, does not in the least resemble I. secundus in this region.

The occipital region of the Proscalopinae, best seen in P. secundus, shows some resemblance to both talpids and "hrysochlorids. The fossil skull preserves a trace of the oecipital erest found in Recent talpids, esperially prominent in Desmama. This crest is not found in the chrrsochlorids; instead there is a crest which follows, essentially, the fronto-parietal suture above and the jumetion of the squamosal and the posterior part of the zroma below. This crest is also present in the Prosealopinae.

The palate in the lroscalopinate extends posteriorly to a line joining the posterior borders of IL^{3}, as in Newotrichus. This character easily distinguishes the Proscalopinae from Talpa.

Mogera, Lropsilus, Desmama and Scalopus, in which the palate ends well posterior to I^{3}, or from Condylura in which the palate ends anterior to M^{3}. The ehrysochlorids resemble Talpa, ete., in this respect. The incisive foramen in P. secundus and Oligoscolops is situated immediately medial to a point between $\mathrm{I}^{1} \because$. The incisive foramen is more posterior in chrysochlorids. The posterior palatal foramina can be seen in P. secumdus and Oligoscolops; they oceur on a line joining the postero-labial roots of the first molars. There are no palatal vacuities. Although neither the sknll of P. secundus nor that of Oligoscalops is complete or free from distortion, it is obvious on inspection that the palate is longer relative to the total skull length and to basicranial length than in Recent talpids or in ehrysochlorids (Table I).

Table I

	Length of palate in cm.	Length of basicranium in cm.	Basicranimm/Palate
Genus	1.54	1.23	.79
Proscalops secundus	1.0	.88	
Oligoscalops whitmanensis	1.14	2.1	1.3
Scapanus	1.53	1.69	1.17
Scalopus	1.43	1.95	1.4
Condylura	1.30	2.44	1.4
Mogera	1.59	1.23	1.2
Neurotrichus	1.0	1.79	1.3
P'arascalops	1.38	1.96	1.4
Talpa	1.33	1.14	1.14
Cropsilus	1.0	2.56	1.8 .5
Desmana	3.20	1.67	$.96-$
Chrysospalax	1.74	1.23	1.00
Amblysomus	1.22	1.0	1.1
Eremitalpa	0.87	1.23	1.4
Chlorotalpa	0.86		

The condylar region of most Recent talpids easily distinguishes them from the Proscalopinae. With the exception of Mogera, the condyle is neither as stout nor as ventrally inelined a structure as in the fossil forms. Recent talpids also possess a small depression at the anterior end of the condyle, a feature not seen in the Prosealopinae. Chrysochlorids resemble the Proscalopinae
in the structures of this region. The foramen magnum in Recent talpids has a notable nick that extends anteriorly to the level of the posterior lacerate foramen or even slightly anterior to it. The corresponding nick in the lroscalopinae extends to a similar position but is much less pronounced, due to the more rentral position of the condyle. The same is true of the chrysochlorids. The condylar and posterior lacerate foramina in the Proscalopinae are situated close to the condyle; the former is a narrow slit just above the artieular area of the condyle. The position of these foramina is similar to that in Recent talpids. The carotid foramen is closer and more nearly lateral to the condylar and posterior lacerate foramina in the fossils than in scalopus and other Recent talpids, but is not greatly different in position from that of the chrysochlorids. The carotid artery seems to enter the posterior wall of the bulla as in the talpids. It is the most eonspicuous foramen in the skull.

The bullae of I. tertius are irregularly quadrangular in outline and are neither as inflated as in the chrysochlorids nor as Hattened as in Recent talpids. They bear rounded crests that run medially from the external auditory meatus, the anterior and posterior parts of the bullae sloping upwards from the crests. In Oligoscalops the bullae are less differentiated from the skull, and the crests are less salient. No sutures between the various elements of the bullae can be seen, but a basisphenoid component was certainly present. As in Recent talpids, the bullae merge anteriorly with the side walls of the posterior narial passage but, in contrast to most of them, the basisphenoid and elements anterior to it are little if at all inflated or cancellous in the Proscalopinae. The basicranium in this area bears a slight but notable median erest that runs forward to about the level of the Eustachian openings. A similar but smaller crest can be seen in Scalopus, and in Desmana this erest is slightly larger. The external anditory meatus in P^{\prime}. tertius is a large opening, larger than in scalopus. It is hroken in the other fossil specimens. The foramen ovale can be seen in P. secundus in the usual position. Its large size suggests that it also gave passage to the tendon of M. tensor tympani, as in the ehrysochlorids and smaller moles. It may also have housed a vein. The limits of the foramen rotundum cannot be determined, but it is anterior to the foramen ovale and in the usual position. The Eustachian openings are rather large and oval shaped, directed almost immediately rentrally. The openings are larger than any observed in chrysochlorids. Placed slightly lateral and posterior to the external
auditory meatus is the strlomastoid foramen, and postero-medial to it is the hyoidean ragina. The two are separated from the external anditory meatus by a low bar of bone. Conditions here are much as in the chrysochlorids. In Recent talpids, such as Scalopus, the openings are situated postero-lateral to the carotid foramen, not antero-lateral to it as in the fossils. The hyoidean ragina is much more pronounced than in the Recent forms. There are two other noticeable depressions on either side of the skulls, postero-lateral to the carotid foramen. One is almost directly posterior to the hyoidean vagina, the other posterior to this but more medial. The latter depression is somewhat elongate transsersely. The function of these depressions is unknown.

The glenoid fossa of I^{\prime}. secundus and I^{\prime}. tertius is a much more pronounced structure than in Recent talpids. It is wider transrersely and deeper, more as in ehrysochlorids. It differs from these forms in having a prominent, anteriorly placed dorsal lip. The postglenoid foramen is extremely small and is sitnated high on the posterior face of the glenoid fossa near its lateral extremity. It is somewhat less lateral in position in the ehrysochlorids, where it is on the medial face of the fossa and more nearly dorsal to the external anditory meatus. The nsual condition in Recent talpids is for the foramen to be sitnated ventral to the posterior wall of the fossa, immediately dorsal to the anterior erus of the trompanic.

Fig. 1. Diagram of the basicranial region of Proscalops tertius. Stippled areas represent broken parts of skull. x3. Abbreviations: c.f., carotid foramen; co.f., condylar foramen; Eu., Eustachian opening; h.v., hyoidean vagina; p.l.f., posterior lacerate foramen; s.f., stylomastoid foramen.

The Lower Jaw

Rami are known in Proscalops tertins. I'. miocaenus and Oligoscalops. These are slender and relatively uniform in depth. The rami of Oligoscalops show a slight bowing down below $\mathrm{P}_{4}-\mathrm{M}_{1}$, corresponding to the flexure in the upper tooth row. This bowing down is unlike anything seen in other talpids or in chrysochlorids. The symphysis was evidently elongate but weak. This is suggested by the ragose area on one of the rami of Oligoscalops, which extends posteriorly to P_{4}. In this respect the Prosealopinae do not differ from most talpids. The mental foramen, a single opening, is preserved only in Oligoscalops, where it is situated below P_{3}.

The posterior portion of the ramus is most completely preserved in P. miocarmus and the deseription is based on this specimen. The coronoid process rises at right angles to the main body of the ramus and, although incomplete at the tip, does not seem to curve posteriorly. It is not as narrow as in Recent talpids, and the posterior border, as in Mogcra, has a forward slope. The condyle is wider than in Recent forms and is situated on a long stout neek. The angular process is short, stout and wide and leaves the body of the ramus at a lower level than in Recent talpids. In Oligoscalops, so far as can be told from the material, it is possible that the angle may have left the ramus at a somewhat higher level. The angle is not dorso-ventrally compressed as in Cropsilus. In comparison with the chrysochlorids, the prosealopine ramus is more stender. In the African forms, with the exception of the large Chrysospalax, the coronoid process is greatly reduced. The condyle is similar in inclination and in the structure of the neck, but the articular surface in the Proscalopinae faces essentially posteriorly whereas this surface in the chrysochlorids faces almost entirely dorsally. The angle of the chrysochlorids differs in being deeper and more compressed as well as projecting well below the horizontal ramus. The two groups are very distinct in this region.

The dentition

The diagnostic characters of the dentition of the members of the subfamily have been given in the taxonomic section. A more detailed treatment of the dentition and a brief comparison with Recent forms follow.

L'pper dentition. In both Oligoscalops and Proscalops secundus the first incisor is enlarged and is flanked by two other small apparently conical incisors. I^{3} is smaller than I^{2} in I^{\prime}. sccondus: these teeth are broken and represented only by the roots in

Oligosealops. The ranine is simple and conical in both specimens. It is lareer than lo: in I^{\prime}. sceundus and lareer than the first premolar in Oligoscolops. Sll the incisors, canines and anterior premolars are separated from each other by diastemata. The premolar series comsists of three teeth, 2 interpreted as $\mathrm{P}^{1.3-t}$. In Oligoscalops, l^{3} : is laterally compressed, has a partially dirided root, and is in contact with P^{4}. In P. miocacmes the two anterior premolars are badly worm. ${ }^{r 3}$ is not laterally compressed as in Oligoscalops and has one root. A diastema separates $\mathrm{P}^{3:}$ and P^{+}in all specties of Proscalops. In P^{\prime}. sccumdus, $\mathrm{P}^{1,3}$ are simple, conical and single-rooted teeth. P:3 is present on the left side of P. tcritus and agrees in form with that of I. secuudus. These teeth are not known in Mesoscalops.

P't differs in the seveal species. In Oligoscalops, althongh worn, it consists of a large labial paracone with a parastylar area and a small conical lingmal cosp. The latter cusp has a slightly pinched appearance and is directed posteriorly. In all the species of Proscolops and in Mesoscalops, ${ }^{+4}$ lacks the parastylar area. In I^{\prime}. miocacmus, both the tooth as a whole and the lingual eusp are relatively larger than in oligoscalops ; again, the lingual consp is directed posteriorly. J^{+4} of I^{\prime}. tertius is larger still and also has the essentially conical lingoal ensp directed posteriorly. A change in P^{+}becomes evident in I '. secundus. In this species the lingual rusp has broadened and is more shelf-like in shape. It is also directed more medially than posteriorly, although no part of the lingual ensp extends anterior to the blade-like paracone. In Mesoscalops the antero-posterior broadening of the lingmal (ansp is carried further; it is here distinctly shelf-like. The lingual cosp extends slightly anterior to the paracone, although still directed essentially medially ; it shows a partial division and the marein bears irregularities in the form of swellings. These are also present but are less numerons in I. secundus. One specimen of Mcsoscalops exhibits a small cuspule on the posterior side of the labial eusp. In Oligosculops and the species of Proscalops the tooth has three roots, two labial and one lingual. In Mesoscalops the roots have fused, but tiaces of the original divisions reman.
M^{1} in Oligoscalops is triangular in general outline, with the protocone directed anteriorly. The hypocone is rudimentary, a mere protnberance labial and posterior to the protocone. The blate-like paracone is smaller than the V-shaped metacone. In I^{\prime}. miocuculs the tooth is generally smilar, althongh the hypocone is somewhat better developed and the lingual portion of

[^1]the tooth therefore somewhat broader. A rudimentary protostyle is present. Para- and metacones are similar to those of Oligose lops. In I'. tortins the hypocone is well developed. 'There is a small but distinet protostyle anterior to the protocone, and a minute hypostyle posterior to the hyporone. The protocone is directed somewhat more medially than in the earlier forms. The paracone is again smaller and more bade-like than the metacone. I^{\prime}. secondus contimues the trend toward a squaring up of the ontline of the tooth. The lingual shelf is wider, and the hypocone and protostyle better developed. The paracone is slightly more V-shaped than in earlier forms, and there is a small distinct parastyle. A metastyle is also present. M1 of Mesoscalops has the protocone and hypocone more nearly equal in size, and lacks a protostyle, which gives a distinctly square appearance to the tooth. The para- and metacones resemble those of I. tertios. rather than those of I '. secundus. Both the parastyles and metastyles are present.

Mº of Oligoscolops and P. miocacmus are again similar, although that of the latter is larger and has a more pronounced protocone and parastyle: a metastyle is lacking. In both, the paracone and metacone are V^{*}-shaped. I. tertius is similar in general, again enlarging the lingual portion of the tooth by a well developed hypocone. It also has a parastyle, but no distinct metastyle. The tooth is essentially square, with paracones and metacones subequal in size. I' sccundus is very similar, possessing a slightly more distinct parastyle and a rudimentary metastyle. In H esoscalops the protostyle is less distinct, due to the equalization of the protocone and hypocone. A parastyle is present, but the metastyle is incorporated in the crest from the metacone.

M" in Oligoscalops and P. miocacnus is distinetly triangular, with the protocone directly lingual to the paracone. The hypocone is rudimentary in oligoscalops, absent in P. miocacmus. There are no distinet stylar eusps in either form. This tooth, in both, is antero-posteriorty rompressed, slightly less so in Oligosculops. The posterior margin of the tooth is formed by the bladelike metacone. M3 of I^{\prime}. tertius is smilar althongh larger. The hypotone, however, is clearly present and lingual to the metacone which again forms the posterior margin of the tooth. A protostyle is suggested by a slight swelling. P '. secundus has a wider lingual area with a distinct hypocone and protostyle. The metacone still forms the posterior margin of the tooth, although on RII: there is a minnte enspule posterior to the metacone. A
parastyle is present but there is no distinct metastyle. In Mesoscalops the hypocone is small and rather variable in shape, and the protostyle is very poorly developed. No distinct stylar cusps are seen. In all the specimens, M^{3} is the smatlest of the molars.

All the upper molars have three roots, two labial and one lingual. In Mesoscolops the lingual root is stouter and longer than the labial roots. The same is suggested for the others. In all, the protocone acquires a deeidedly pinched appearance with wear, but the degree of pinching is not diagnostic.

Lower dentition. The incisors, canines and anterior premolars in Oligoscalops, the only form in which these teeth are known, are all broken or badly worn. The Kansas specimen suggests that the canine and I_{1} and l^{\prime}; were simple, conieal and single rooted. P_{t} is laterally compressed and two rooted. In M_{1} the talonid is wider than the trigonid, judging from the fragments that remain, and the opposite is true of M_{2}. A small anterior cuspule is preserved at the base of the paraconid of RM_{2}. In M_{3} the trigonid is wider than the talonid. The relative sizes of the cusps on the molars cannot be determined, due to breakage. Matthew (1909, pl. 49) figures a right ramus of the type of P. miocaemus ${ }^{3}$ in which the relative trigonid-talonid widths are as in Oligoscalops. The metaconid of M_{2} is larger than either the paraconid or the entoconid. An anterior lingual basal cuspule is present in M_{3}. I_{4} of this specimen has a small heel, but is essentially eonieal and apparently two rooted. P_{3} is simple, conieal and single rooted. All the left lower molars of P. tertius are known. In M_{1} the trigonid is narrower than the talonid. The paraconid and metaconid diverge more than in M^{-3}, and a small posterior eingular cuspule and a slight swelling on the lingual face of the paraconid are preserved. In M_{2} the trigonid is wider than the talonid. The metaconid is stout with a rudimentary metastylid; there are both antero-internal and postero-internal cuspules. In H_{3} the trigonid is again wider than the talonid. There is only an antero-internal cuspule. The lower dentition of P. secundus is mknown. M_{1} of Mesoscalops has the trigonid narrower than the talonid, with the paraconid and metaconid widely divergent. A small postero-intermal cuspule is present. M2 has a metastylid, even more distinct than that in I. tertius, as well as anterointernal and postero-intermal euspules. The trigonid is equal in width to the talonid. M_{3} has a simple metaconid and both anteroand postero-internal euspules. The trigonid is wider than the talonid.

[^2]
Comparison watil Recent forms

Although the teeth of the l'resealopinat are talpid-like, a brief comparison with Recent forms is desirable. Most of the Recent tappids have three incisors, the first enlarged, the second and third decreasing in size. ('ondylura, however, has a large eaniniform seeond incisor, larger than either I^{1} or the canme. Uropsilus, apparently with only two incisors, possesses an enlarged $1 \because$, but it is lower than I^{1}. In scalopus the second and third incisors are minnte and placed very close together. The second incisor is separated from the very large I^{1} by a large diastema in Desmana. The eammes in all but Talpa and Mogcra, where they are large, are only slighty larger than the second or third inceror or the first premolar, as in the lroscalopinate. Scalopus and C'ondylure are the only Reeent forms with a reduced premolar series. In Vropsilus p: is either present or absent: where present it is greatly reduced. ${ }^{4} \mathrm{P}^{2}-2$ in this form is larger than both P^{1} and P^{3}. P^{4} shows the greatest difference between the Recent and fossil forms. Condylera, Parascalops, Mogera, Veurotrichus, and Talpa all have a small basal eusp anterior to the paracone. The lingual cusp in these forms is extremely small. The general structure of P4 of Oligoscalops shows some similarity to these five genera. Both the anterior basal cusp and the lingual eusp are essentially lacking in Scopomus and Scalopus. P^{4} of Uropsilus is more similar to most of the Proscalopmae than other talpids, but has a slight anterior cingulum not malike Desmana. The lingual portion of the molars is narrower and lacks the hypoeone development of the later Proscalopinat in all except Neurotrichus, Parascalops, Lropsilus and the members of the Desmaninat. In these forms the wider lingual portion does not show any pinching of the protocone, and the paracone and metacone of ${ }^{1}{ }^{1}$ in Neurotrichus are much simpler than in the fossils. The position of the protostyle in Desmana is very different than in the Proscalopinae. In all Recent talpids, excepting scalopus in which they are essentially lacking, the strlar cusps are more distinct than in the fossils. In the lower dentition, Talpa, Mogera, and C'ondylura have tworooted premotar teeth. I'arascalops and Condylura are the only Recent talpids that have metastylids on the molars. Although antero- and postero-internal fospules are qenerally present, in no case to they comect with emgula as in the l'oscalopinae.

[^3]Cingula are usually lacking, except in Vropsilus and some of the Desmaninae.

Further comparison between the Proscalopinae and Recent talpids in the dentition seems mmecessary; the extinct forms clearly differ from the living in various characters and combinations of characters. No comparison with the zalambdodont chrysochlorids is required.

Arctoryctes-Cryptoryctes and the Proscalopinae

It has been snggested by Matthew (1928) and by Schlaikjer (1933) that the hmmeri described as Arctoryctes may belong to the Proscalops group. This suggestion must now be considered.

Two points tend to support such an association. First, both skulls and hmmeri have talpid characters, yet neither are typically talpid. ('The hmmeri, of course, are very different from those of the chrysochlorids.) Second, the published geologie and geographic ranges of the Proscalopinae and the Arctoryctes group overlap (see Table II).

Table II

| | Early | Oligocene
 Middle | Late | Marly |
| :---: | :---: | :---: | :---: | :---: | Middle

[^4]A comparison of the skull length/humerus length ratio has been made for modern talpids, for a chrssochlorid, and for seleeted prosealopine skulls and arctoryctine humeri. In two cases, skull material and humeri are known from the same horizon and Iocality: Oligosealops whitmanensis (K.U.M.S.P. no. 8143) and Aretoryetes galbreathi (K.U.M.V.P. nos. 9837-9839) ; and Mesoscalops scopelotemos and an midentified species of Arctorycese. In the first case, unfortmately, the two best preserved humeri are broken, and the measurements, kindly supplied by C. A. Reed, are only approximate. No measurements are available for the humeri found with Mesoscalops scopelotemos. There is a fair correspondence in time in one other case, that of Prosealops secundus and Aretoryctes terremus; the former is probably from a somewhat earlier horizon in the Mioeene of South Dakota than the latter. All other occurrences are rather widely separated in time or space. There is no known prosealopine that eould correspond to the small Cryptoryctes kayi. The ratios (Table III) of Oligosealops whitmanensis/Aretoryetes galbreathi and Prosealops secundus/Aretoryetes terrenus do not differ greatly from those of certain talpids but do differ from that of the only chrysochlorid available for comparison. These ratios at least snggest that association is not impossible.

Table III
specimen
skull/humerus ratio remarks

Seapanus		209\%	from Reed, 1954
Condylura		245%	,6 ، 6
Neurotrichus		304%	6 66 ،
Chrysochloris stuhlmani		180\%	(long skull)
Oligoscalops whitmanensis	skull	252-256\%	based on estimated humeri
Aretoryctes galbreathi	humerus		lengths
Proscalops secundus	skull	245%	slight
Aretoryctes terrenus	hmmerus		difference in age

Although not impossible, the association of the skulls and humeri is, of course, very far from proven. A typical talpid humerus is known from the mid-Oligocene Cedar Creek member of Colorado (Galbreath 195:3), the same deposit that has yielded specimens of Oligosealops whitmancusis and Aretoryctes yalbreathi. The earliest non-proscalopine North American talpid is Domminoides; two species of this genus are known from the carlier Miocene, one of them from beds just below those containing Proscalops sccundus (Macelonald, pers. (eomm.). I have seen trpical talpid humeri from a deposit that has rielded remains of Domminoides ("Yalentine formation," Fort Niobrara locality) and strongly suspect that these humeri are referable to that genus. It seems likely that the Cedar Creek talpid humerus represents some otherwise murecorded member of the family, but the possibility that it is referable to Oligoscalops should not be ignored - nor can the possibility lee ignored that the AretoryctesC'ryptoryctes limeri may be referable to some other group altogether. Only the fortunate diseovery of proscalopine cranial or dental material in ummistakable association with aretoryctine humeri will settle the question.

After this study was completed, Russell (1960) suggested that the arctoryetine hmeri may belong to licropternodus and related forms, since a humerus, identified by C. A. Reed as Cryptoryctes, oceurs at a locality that has rielded "hentroyomphios" (= Microptcrnodus). Furthermore, if the skull proportions of Microptcrnodus are similar to those of talpids, the skull/humerus ratio of Micropternorlus and C'ryptoryctes ($2+8 \%$) is much eloser to those of talpids than to those of epoicotherids or apternodontines, again suggesting a possible relationship between Micropternodus and Cryptoryetes.

This ratio is not very different from that obtained by comparing prosealopine skulls and aretoryetine humeri. However, as the evidence supporting the association of the humeri with either the Proscalopinae or the Micropternodus group is no more than circumstantial at best, it is not possible to draw any conclusions at this time.

CONCLUSIONS

The morphological characters of the skull obviously unite the prosealopine species and clearly separate them from other tal pids. As regards intergroup relationships, it can be stated that Oligoscalops, the earliest known form, can be easily distinguished
from the rest of the subfamily on the charaeters of P^{3} and P^{4}, although the orerall ensp pattern and the strmeture of the molars are not very different from Prosealops. Within the gemus Proscalops there are certain trends in the evolution of the dentition that may easily be seen. There is a tendeney to broaden the lingual portion of the upper molars and ${ }^{24}$, witl a general squaring of the outline of these teeth. In the lower molars there is a progressive complication of the teeth hy the addition of anteroand postero-internal cospules and the development of a metastylicl. Mesoscalops, the latest known form, while similar in the general pattern of the lower molars, has modified the upper molars by eliminating the protostres. ${ }^{3+4}$ of this form differs in having incipient division of the lingual cusp as well as fusion of the roots. This gemms conld, however, have been derived from a form not molike P^{\prime}. scemudus. The mutual relationships within the subfamily appear to be as in Figure 2.

Fig. -. Diagrammatic representation of the relationship of the known members of the Proscalopinae.

The Prosealopinae are very different from all other talpids so far as the characters of the skull are concerned. In this the group differs more from the other talpid subfamilies than these subfamilies do from each other. This smogests that it might be more proper to group all other moles, with the exception of the Desmaninae, in one subfamily. Our ignorance of the family is such, however, that 1 do not take this step. If the eurious arctoryetine humeri should prove to be referable to the prosealopines, the combination of cranial and lmmeral characters would certainly warrant the erection of a new family for the Proscalopinae, as Matthew suspected.

It has been shown that there is a remarkable parallelism between the prosealopines and the chrysochlorids. This is partieularly evident in the premaxillary region, the squamosal flange, seen partieularly in l^{\prime} 'sccundus, and the general structure of the basicranial region. The faet that these peenliar fossorial adaptations have arisen more than once in the Insectivora re. moves some of the uniqueness of the chrysochlorids.

REFERENCES

Cabreri, A.
1925. Genera Mammalium. Vol. シ, Insectivora, Galeopitheria. Madrid, $23: \mathrm{p}$.
(iALBREATH, E. C.
1953. A contribution to the Tertiary geology and palcontology of northeastern Colorado. Univ. Kansas, Paleontological Contrilutions, Vertebrata, Article 4, pp. 1-120.
Hocgir, J. and R. M. Alf
1956. Chadronian mammatian fana from Nebraska. Jour. Paleontology, vol. 30, pp. 132-140.
Mitthew, W. D.
1901. Fossil mammals of the Tertiary of northeastern Colorado. Mem. Amer. Mus. Nat. Hist., vol. 1, pt. 7, pp. 355-447.
1909. The Carnivora and Insectivora of the Bridger Basin Middle Eocene. Mem. Amer. Mus. Nat. Ilist., vol. 9, pt. 6, pp. 291-567.
1928. Krnotherium, an edentate. Jour. Mammalogy, vol. 9, pp. 70-71. Reed, ('. A.
1954. Some fossorial mammals from the Tertiary of western North America. Jour. Paleontologs, vol. $\because 8$, pp. 102-111.
1956. A new species of the fossorial mammal Arctoryctes from the Oligocene of Colorado. Fieldiana, Geology, vol. 10, no. $-4, \mathrm{pp}$. 305-311.
Reed, K. M .
1960. Insectivora of the Middle Miocene Split Rock local fanna, Wyoming. Breviora, Mus. Comp. Zool., no. 116, pp. 1-11.
Ru'sseli, D. A.
1960. A review of the Oligocene insectivore Micropternodus borealis. Jour. Paleontology, vol. 34, no. 5, pp. 940-949.
Schlatijer, E. M.
1933. Contributions to the stratigraphy and paleontology of the Goshen Hole area, Wyoming. I. A detailed study of the structure and relationships of a new zalambdodont insectivore from the Middle Oligocene. Bull. Mus. Comp. Zool. Harvard Coll., vol. 76, pp. $1 \div 7$.

[^0]: 1 Matedonald (pers. comm, suggests that the horizon may be either Mon:oe Creak formation or Harrison formation.

[^1]: 2 The promolar seriss might be prot hy analogy with lropsilus.

[^2]: 3 This part ol the type was not included in the material sent to me lor study.

[^3]: thn thre of four specimens ramined, l’3 was present, althongh it was most greatly retuced in a male skull. 'The one skull lacking p’3 was also a male. Cabrera's dental formata is thas incorrect and shomet read for the upper
 1425, (ienrra Mammalim, vol. 2, Insertivora, (ialeopitheria).

[^4]: * Recorded, but lost in the field.
 * Abecies not identitied. (Iked. C. A., pers. commin, 1961).
 \dagger Fxact horizon uncertain.

